
OW2con’21

OpenPGP Web Key Directory
http://dashohoxha.fs.al/web-key-directory/

Dashamir Hoxha
dashohoxha@gmail.com

What is WKD?

If you use OpenPGP/GnuPG to secure your email communication, you
want to share your public key with your contacts.

Web Key Directory is a way for sharing your key by publishing it on the
WWW, on a well-known URL, where email clients can find and download
it automatically.

https://wiki.gnupg.org/WKD

WKD Benefits

Once you publish your key on the WKD, your contacts will be able to:

● Verify your signed emails automatically, because their mail clients can find
and fetch your public key automatically.

● Send you immediately encrypted messages, without asking for your public
key first, because their mail clients can find and fetch it automatically.

WKD is supported by almost all the mail clients (Thunderbird, KMail, Outlook,
etc.)

WKD Alternatives

Some traditional ways for sharing your public key are:

● Export the key and attach it to the first email.

● Publish it on the so-called "keyserver network", where your contacts
can find and fetch it.

Both of these methods have their problems and are not recommended.

WKD is the recommended way.

How WKD Works

Before building a WKD, let's try to understand first how it
works by following the steps that a mail client would do to
locate the public key corresponding to a certain email
address.

Let's say that the email address is: user@example.org

How WKD Works: 1. Check for WKD existence

A mail client will check first whether a WKD for the domain example.org exists.

1. It does it by checking first for the presence of:

https://openpgpkey.example.org/.well-known/openpgpkey/example.org/policy

2. If it fails, then it checks for the presence of:

https://example.org/.well-known/openpgpkey/policy

The first one is called the advanced method, and the fallback one is called the direct
method. The file policy is usually just an empty file.

How WKD Works: 2. Get the key from WKD

Depending on which WKD method exists for example.org, it tries to download the
public key from one of these locations:

● For the advanced method:
https://openpgpkey.example.org/.well-known/openpgpkey/example.org/

 hu/nmxk159crbcuk3imqiw13gkjmfwd8mqj?l=user

● For the direct method:
https://example.org/.well-known/openpgpkey/
 hu/nmxk159crbcuk3imqiw13gkjmfwd8mqj?l=user

The directory hu stands for hashed-userid, and nmxk159crbcuk3imqiw13gkjmfwd8mqj
is indeed a kind of hash of user, the local-part of the email address.
For now we don’t need to know how to calculate or find out this hash.

Building a WKD

First, let's build a WKD with the direct method, since it is a bit simpler than the
advanced method.

The direct method requires that we have access to the webserver of the
domain example.org, and that the server supports HTTPS.

The advanced method, additionally, requires access to the DNS server of the
domain example.org

Building a WKD: 1. Create the directory of public keys

1. On the web server create the web key directory like this:

 mkdir -p /var/www/html/.well-known/openpgpkey/
 touch /var/www/html/.well-known/openpgpkey/policy

2. Export the public key in binary format (not ASCII armored):

 gpg --no-armor --export \
 user@example.org > nmxk159crbcuk3imqiw13gkjmfwd8mqj

3. Transfer it to the web server, and save it at:

 .well-known/openpgpkey/hu/nmxk159crbcuk3imqiw13gkjmfwd8mqj

Building a WKD: 1. Create the directory of public keys

We can get the hashed-userid from a gpg command like this:

gpg --with-wkd-hash --fingerprint user@example.org
gpg --with-wkd -k user@example.org

The output will be something like this:

 pub rsa3072 2021-04-22 [SC] [expires: 2023-04-22]
 901D C530 A8E1 DEBA FED0 6C25 C802 3646 1A8D CFC2
 uid [ultimate] user@example.org
 nmxk159crbcuk3imqiw13gkjmfwd8mqj@example.org
 sub rsa3072 2021-04-22 [E]

Building a WKD: 1. Create the directory of public keys

The same way we can publish the public keys for more email addresses, like
user1@example.org, user2@example.org, etc.

At the end, the directory should look like this:

 /var/www/html/.well-known/
 └── openpgpkey
 ├── hu
 │ ├── nmxk159crbcuk3imqiw13gkjmfwd8mqj
 │ ├── sxpkq64cy1wikgh8o8eddrx6bg8urzu8
 │ └── wgrbabzq3fs5uryhxq96e8nnwxae78fw
 └── policy

Building a WKD: 2. Webserver configuration

The web server of WKD:
● Should disable directory listing.
● Should have the right CORS headers.
● Should use application/octet-stream as the Content-Type for the data

of public keys.

For apache2 the configuration should look like this:
 <Directory "/.well-known/openpgpkey/hu">
 Options -Indexes
 ForceType application/octet-stream
 Header always set Access-Control-Allow-Origin "*"
 </Directory>

Note: It requires that the apache2 modules mime and headers are enabled.

Testing the WKD

We can test the WKD by downloading a published key with wget.

First of all we need to find out the hashed-userid, and we can use
gpg-wks-client for this:
 apt install gpg-wks-client
 alias gpg-wks-client='/usr/lib/gnupg/gpg-wks-client -v'
 gpg-wks-client --print-wkd-hash user@example.org

The output looks like this:
 nmxk159crbcuk3imqiw13gkjmfwd8mqj user@example.org

Testing the WKD (2)

Now we can construct the URL manually and download the public key:

 wget -q -O user-example-org.pubkey \
 https://example.org/.well-known/openpgpkey/hu/
 nmxk159crbcuk3imqiw13gkjmfwd8mqj?l=user
 gpg --import user-example-org.pubkey

Other ways for testing that the published key is accessible via WKD are these:

● Using gpg --locate-keys like this:
 env GNUPGHOME=$(mktemp -d) \
 gpg -v --locate-keys user@example.org

● Using a WKD validator like this one:
 https://metacode.biz/openpgp/web-key-directory

https://metacode.biz/openpgp/web-key-directory

Publishing the keys of an organization

We have seen already how to publish keys manually one by one, but as the
number of keys to be published gets large, it becomes tedious and error-prone
to manage them.

However it is possible to publish them in bulk (using gpg-wks-client).

Let's assume that we have in our GnuPG keyring the public keys of the
members of an organization (for example they were sent to us by attachment,
and we imported them).

Publishing the keys of an organization (2)

We can export all these keys into a WKD format like this:

 mkdir wkd
 gpg --list-options show-only-fpr-mbox \
 --list-keys "@example.org" \
 | gpg-wks-client --install-key --directory wkd/

The GnuPG keyring is searched for all public keys (--list-keys) matching the
defined pattern (@example.org), and the output shows only fingerprint and user_id
values, like this:

901DC530A8E1DEBAFED06C25C80236461A8DCFC2 user@example.org
D67E52B28F276D2AE5250B4EFF09740FC5FD1300 user1@example.org
38186EF3FDA463907B494A4AEDF1E29CB878858F user2@example.org

Publishing the keys of an organization (3)

With the input from the first command, gpg-wks-client creates a WKD directory
structure that looks like this:

 $ tree wkd/

 wkd/
 └── example.org
 ├── hu
 │ ├── nmxk159crbcuk3imqiw13gkjmfwd8mqj
 │ ├── sxpkq64cy1wikgh8o8eddrx6bg8urzu8
 │ └── wgrbabzq3fs5uryhxq96e8nnwxae78fw
 └── policy

Publishing the keys of an organization (4)

We can use rsync to synchronize the directory wkd/example.org/hu/ with the
one on the webserver, for example:

 rsync -a --delete \
 ./wkd/example.org/hu/ \
 webserver:/var/www/html/.well-known/openpgpkey/hu/

The advanced method of WKD

With the direct method the keys are published in a location like:
 https://example.org/.well-known/openpgpkey/hu/

With the advanced method the keys are published in a location like:
 https://openpgpkey.example.org/.well-known/openpgpkey/example.org/hu/

Everything else is the same.

The advanced method of WKD (2)

The advanced method requires the subdomain openpgpkey.example.org to be
resolvable.

If we want to use the direct method, we should make sure that this subdomain is
not resolvable, since WKD clients will first try the advanced method, and only if the
openpgpkey subdomain is not resolvable will fall back to the direct method.

While the direct method is simpler because it does not need any DNS modifications,
the advanced method is more flexible because:

● It allows us to use a WKD server that is different from the web server.

● It allows us to support more than one email domain in the same WKD server.

Web Key Service (WKS)

So far we have seen how to publish keys manually (one by one or in bulk). For a
large organization it is more suitable if each member can publish and update
his key himself. One way to implement this is with a web interface where users
can upload their public key. Another one is to send the public key to WKD by
email.

WKS allows users to publish their public key by email, through a specific email
protocol.

Thank you for your attention!
Any questions or comments?

http://dashohoxha.fs.al/web-key-directory/

Dashamir Hoxha
dashohoxha@gmail.com

http://dashohoxha.fs.al/web-key-directory/

